The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control.

نویسندگان

  • A Schulz
  • S Schwab
  • G Homuth
  • S Versteeg
  • W Schumann
چکیده

We show that the htpG gene of Bacillus subtilis is induced by heat, as has been reported for the Escherichia coli homolog. Analysis of different mutants revealed that the htpG gene belongs to class III heat shock genes in B. subtilis. An about 10-fold induction after thermal upshock was found at the levels of both transcription and translation, and this induction resulted from enhanced synthesis of mRNA. By primer extension, we identified one potential transcription start site immediately downstream of a putative sigmaA-dependent promoter which became activated after thermal upshift. Northern blot analysis revealed that htpG is part of a monocistronic transcriptional unit. An operon fusion where the complete region between htpG and its upstream gene was fused to the bgaB reporter gene accurately reflected htpG expression. Analysis of this fusion revealed that, in contrast to other class III heat shock genes, htpG was not induced by osmotic upshock, by ethanol, or by oxygen limitation, suggesting that it belongs to a subgroup within class III. Deletion of the region upstream of the putative promoter resulted in an enhanced basal level of htpG expression, but the 10-fold induction was retained, suggesting that the upstream sequences are involved in the regulation of expression in the absence of heat shock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat.

The NfrA protein, an oxidoreductase from the soil bacterium Bacillus subtilis, is synthesized during the stationary phase and in response to heat. Analysis of promoter mutants revealed that the nfrA gene belongs to the class III heat shock genes in B. subtilis. An approximate 10-fold induction at both the transcriptional and the translational levels was found after thermal upshock. This inducti...

متن کامل

hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.

Whereas in Escherichia coli only one heat shock regulon is transiently induced by mild heat stress, for Bacillus subtilis three classes of heat shock genes regulated by different mechanisms have been described. Regulation of class I heat shock genes (dnaK and groE operons) involves an inverted repeat (CIRCE element) which most probably serves as an operator for a repressor. Here, we report on t...

متن کامل

Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.

Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a glob...

متن کامل

Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons.

Within the framework of an international project for the sequencing of the entire Bacillus subtilis genome, a 36-kb chromosome segment, which covers the region between the gnt and iol operons, has been cloned and sequenced. This region (36447 bp) contains 33 complete open reading frames (ORFs; genes) including the four gnt genes and one partial gene. A homology search for the products of the 33...

متن کامل

The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.

Class I heat-inducible genes in Bacillus subtilis consist of the heptacistronic dnaK and the bicistronic groE operon and form the CIRCE regulon. Both operons are negatively regulated at the level of transcription by the HrcA repressor interacting with its operator, the CIRCE element. Here, we demonstrate that the DnaK chaperone machine is not involved in the regulation of HrcA and that the GroE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 10  شماره 

صفحات  -

تاریخ انتشار 1997